Recalculating BE% & GNASD for GEMF – USA Sub‐Fund (June 1, 2025)
- June 1, 2025
- Posted by: Drglenbrown1
- Category: GATS Methodology

Introduction
On June 1, 2025, the M 60 DAATS values for our 28‐stock Global Equity Momentum Fund (GEMF) – USA Sub‐Fund have materially changed. Below we:
- Recompute Mean DAATS and σpop (in points).
- Derive GNASD (the “one‐sigma noise unit per instrument”, in points).
- Compute Breakeven % (BE %), also in points.
- Calculate each stock’s per‐instrument BE distance (in points).
- Link all formulae back to Dr. Brown’s Seven Laws of Volatility Stop‐Loss.
1. Definitions & Notation
- N = number of instruments (28 equities).
- ATR200(M60) = average true range over 200 M 60 bars (in points). (Law 1)
- k = √P ≈ 15 (for P = 200). (Law 2)
- DAATSi = k × ATR200_i (in points). (Law 3)
- Given: DAATS values already in points for each stock.
- Mean DAATS:
mean_DAATS = (1/N) × Σi=1..N DAATSi
(in points). - σpop (population standard deviation):
σpop = √[ (1/N) × Σi=1..N (DAATSi − mean_DAATS)² ]
(in points). (Law 7) - GNASD = σpop ÷ N (in points). (Law 7)
- BE % = [GNASD ÷ mean_DAATS] × 100 (%.). (Laws 4 & 7)
- BE distancei = (BE % / 100) × DAATSi (in points). (Law 4)
- Post‐BE Trailing = subtract/add GNASD points from each new high/low. (Law 5)
- Position Size = (Equity × Risk %) ÷ (DAATSi × \$ per point). (Law 6)
2. Updated DAATS Values (points)
Ticker | DAATS (points) |
---|---|
AAPL | 2779 |
MSFT | 4525 |
AMZN | 2908 |
GOOGL | 2431 |
TSLA | 7965 |
JNJ | 1348 |
JPM | 2608 |
BA | 2757 |
PG | 1519 |
V | 3347 |
WMT | 999 |
NVDA | 2221 |
BRK.B | 4586 |
HD | 3895 |
DIS | 1242 |
INTC | 362 |
META | 9052 |
NFLX | 15787 |
PEP | 1249 |
ADBE | 4319 |
CAT | 4024 |
GS | 7523 |
CVX | 1489 |
AXP | 3442 |
CRM | 3624 |
MCD | 2717 |
PFE | 272 |
CSCO | 592 |
3. Compute Mean DAATS & σpop (points)
Mean DAATS:mean_DAATS = (1/28) × Σ DAATSi = 3556.5 points
(Sum of 28 DAATS = 99 582 points ÷ 28 ≈ 3556.5 points.)
σpop:σpop = √[ (1/28) × Σ (DAATSi – 3556.5)² ] ≈ 3187.89 points
4. Compute GNASD (points)
By Law 7:GNASD = σpop ÷ N = 3187.89 ÷ 28 ≈ 113.85 points
Rounded: GNASD ≈ 114 points.
This 114-point buffer is our “portfolio‐level one-sigma noise unit per stock.”
5. Compute Breakeven % (BE %)
By Laws 4 & 7:BE% = (GNASD ÷ mean_DAATS) × 100% = (113.85 ÷ 3556.5) × 100% ≈ 3.2013%
Rounded: BE % ≈ 3.20 %.
Each stock must move in your favor by 3.20 % of its own DAATS (in points) to shift the stop to breakeven.
6. Per-Instrument Breakeven Distance (points)
For each instrument i: BE_disti = (BE% / 100) × DAATSi
(in points).
Ticker | DAATS (pts) | BE_dist ≈ 3.20% × DAATS (pts) | Rounded (pts) |
---|---|---|---|
AAPL | 2779 | 0.0320 × 2779 ≈ 88.93 | 89 |
MSFT | 4525 | 0.0320 × 4525 ≈ 144.80 | 145 |
AMZN | 2908 | 0.0320 × 2908 ≈ 93.06 | 93 |
GOOGL | 2431 | 0.0320 × 2431 ≈ 77.79 | 78 |
TSLA | 7965 | 0.0320 × 7965 ≈ 254.88 | 255 |
… | … | … | … |
NFLX | 15787 | 0.0320 × 15787 ≈ 505.18 | 505 |
PFE | 272 | 0.0320 × 272 ≈ 8.70 | 9 |
CSCO | 592 | 0.0320 × 592 ≈ 18.94 | 19 |
Interpretation: If AAPL entry = 150 000 pts, once price ≥ 150 089 pts (i.e. +89 points), move stop → 150 000 (breakeven), then trail by 114 points.
7. Link Back to Dr. Brown’s Seven Laws
- Law 1 (Volatility Unit): ATR200(M60) is one volatility exposure. DAATSi = 15 × ATR, all in points.
- Law 2 (Exposure-Scaling): Initial buffer = 15 exposures. For breakeven/trailing, local exposure Li = 0.48 ATR (≃ 0.032×15).
\(\displaystyle L_i = \frac{\text{BE_dist}_i}{\text{ATR}_i} = 15 × 0.032 = 0.48\) ATR. - Law 3 (Initial-Stop = DAATS): Stop₀ = Entry ± DAATSi (points).
- Law 4 (Breakeven-Fraction): Shift to breakeven once price moves ≥ BE_disti (points).
\(\displaystyle \text{BE_dist}_i = \bigl(\tfrac{\text{BE%}}{100}\bigr) × \text{DAATS}_i.\) - Law 5 (Trailing-Exposure): After breakeven, trail by fixed GNASD = 114 points behind each new high/low.
- Law 6 (Tiered-Risk Allocation): Position size = (Equity × Risk %) ÷ (DAATSi × \$ per point).
E.g. if 1 point = $0.01 per share, risk = $500, AAPL DAATS = 2779 pts → risk per share = 2779×0.01 = $27.79 → shares ≈ $500 ÷ 27.79 ≈ 18 shares. - Law 7 (Universe Volatility): GNASD = σpop ÷ N (points), BE % = (σpop)/(N × mean_DAATS)×100. • σpop = 3187.89 pts, N = 28 → GNASD ≈ 113.85 pts. • BE % ≈ 113.85/(28×3556.5)×100 ≈ 3.20 %.
8. Implementation Pseudocode (All in Points)
Inputs:
Universe = {instrument₁, …, instrument₂₈}
DAATS_pts[i] // Provided above, in points
N = 28
Equity // e.g. 100 000 USD
RiskPct // e.g. 0.005 for 0.5%
PointValue_per_share[i] // e.g. $0.01 per point per share (broker‐specific)
DailyBiasFilter(i) // returns true if Daily MACD bias aligns
M60RegimeFilter(i) // returns true if M60 EMA50/EMA89 regime aligns
// 1. Compute portfolio statistics
mean_DAATS_pts = (Σ DAATS_pts[i], i=1..28) / 28
sigma_pop_pts = sqrt( (1/28) × Σ (DAATS_pts[i] - mean_DAATS_pts)² )
GNASD_pts = sigma_pop_pts / 28 // ≈ 113.85 → round to 114
BE_percent = (sigma_pop_pts) / (28 × mean_DAATS_pts) × 100 // ≈ 3.20%
// 2. For each instrument i:
for i in 1..28:
DAATS_i = DAATS_pts[i] // in points
BE_dist_i = (BE_percent / 100) × DAATS_i // in points
// Check higher‐timeframe filters:
if !DailyBiasFilter(i) then skip
if !M60RegimeFilter(i) then skip
entry_price_pts = GetEntryPrice(i) // in points
if direction == LONG:
stop_pts = entry_price_pts - DAATS_i
else:
stop_pts = entry_price_pts + DAATS_i
// Law 6: position sizing
risk$_ = Equity × RiskPct // e.g. $500
$per_point = PointValue_per_share[i] // e.g. $0.01
shares = floor( risk$_ / (DAATS_i × $per_point) )
if shares < 1 then skip // minimum lot size
is_breakeven = false
high_BE = -∞
low_BE = +∞
// 3. On each new tick/bar (M1/M5/M15/M30):
current_price_pts = GetCurrentPrice(i)
if !is_breakeven:
profit_pts = (current_price_pts - entry_price_pts) if LONG
else (entry_price_pts - current_price_pts)
if profit_pts ≥ BE_dist_i:
is_breakeven = true
stop_pts = entry_price_pts
high_BE = current_price_pts
low_BE = current_price_pts
else:
if direction == LONG:
high_BE = max(high_BE, current_price_pts)
trail_stop = high_BE - GNASD_pts
stop_pts = max(stop_pts, trail_stop)
else:
low_BE = min(low_BE, current_price_pts)
trail_stop = low_BE + GNASD_pts
stop_pts = min(stop_pts, trail_stop)
// Optional: enforce M60 DAATS floor
if direction == LONG:
floor_stop = entry_price_pts - DAATS_i
stop_pts = max(stop_pts, floor_stop)
else:
floor_stop = entry_price_pts + DAATS_i
stop_pts = min(stop_pts, floor_stop)
// 4. Exit condition
if (direction == LONG and current_price_pts ≤ stop_pts) or
(direction == SHORT and current_price_pts ≥ stop_pts):
CloseTrade(i)
break
About the Author
Dr. Glen Brown
Founder, President & CEO of Global Accountancy Institute, Inc. and Global Financial Engineering, Inc. With 25+ years in proprietary trading and quantitative research, Dr. Brown developed the Seven‐Law Volatility Stop‐Loss framework and the GATS platform. All research remains in-house; we generate revenue solely from trading performance.
Business Model
Global Accountancy Institute, Inc. and Global Financial Engineering, Inc. operate a fully closed research-&-trade model. We do not license software or accept external capital. All intellectual property—including GATS algorithms, stop-loss rules, and automation scripts—is proprietary. Trading profits are our only revenue source, ensuring complete alignment between research and performance.
Risk Disclaimer
This material is educational only and does not constitute financial advice. Trading equities involves substantial risk of loss. Past performance is not indicative of future results. Always consult a qualified advisor before making trading decisions, and only trade with capital you can afford to lose.